请选择 进入手机版 | 继续访问电脑版

科研迷论坛

 找回密码
 立即注册
搜索
查看: 18|回复: 0

Logic for Concurrency and Synchronisation-[2003]-[pdf]-[Ruy J.G.B. de Queiroz (ed.)]

[复制链接]

0

主题

0

帖子

0

积分

管理员

Rank: 9Rank: 9Rank: 9

积分
0
发表于 2020-2-10 22:19:19 | 显示全部楼层 |阅读模式
★★★如何下载★★★1、VIP学者回复帖子后可以看到下载链接,免费下载!点击这里成为VIP学者!
2、普通用户回复帖子后可以看到下载链接,回复将花费5学币点击这里获取学币!


免费下载30页预览文件

书籍信息:
书名: Logic for Concurrency and Synchronisation
语言: English
格式: pdf
大小: 7.7M
页数: 308
年份: 2003
作者: Ruy J.G.B. de Queiroz (ed.)
系列: Trends in Logic 18
出版社: Springer

简介

The study of information-based actions and processes has been a vibrant interface between logic and computer science for decades now. The individual chapters of this book show the state of the art in current investigations of process calculi with mainly two major paradigms at work: linear logic and modal logic. Viewed together, the chapters also offer exciting glimpses of future integration with obvious links including modal logics for proof graphs, labelled deduction merging modal and linear logic, Chu spaces linking proof theory and model theory and bisimulation-style equivalences for analysing proof processes. The combination of approaches and pointers for further integration also suggests a grander vision for the field. In classical computation theory, Church's Thesis provided a unifying and driving force. Likewise, modern process theory would benefit immensely from a synthesis bringing together paradigms like modal logic, process algebra, and linear logic. If this Grand Synthesis is ever going to happen, books like this are needed!

This book is for researchers in computer science, mathematical logic, and philosophical logic. It shows the state of the art in current investigations of process calculi with mainly two major paradigms at work: linear logic and modal logic. The combination of approaches and pointers for further integration also suggests a grander vision for the field.


目录
Contents......Page 6
List of Figures......Page 12
List of Tables......Page 16
Foreword......Page 18
Preface......Page 20
Contributing Authors......Page 22
Part I From a Structural Perspective......Page 24
1 Geometry of Deduction via Graphs of Proofs......Page 26
1 Motivation......Page 27
2 The idea of studying proofs as geometric objects......Page 35
3 Proof-nets......Page 40
4 Logical flow graphs......Page 57
5 Multiple-conclusion classical calculi......Page 73
6 Finale......Page 93
1 Preface......Page 112
2 The trip translation......Page 116
3 Chu’s construction......Page 121
4 Proof-nets, trips and translations......Page 123
3 Two Paradigms of Logical Computation in Affine Logic?......Page 134
1 Introduction......Page 135
2 Sequent calculus of MAL + Mix......Page 142
3 Additive mix......Page 146
4 Proof-nets for MAL + Mix......Page 149
5 Cut-elimination modulo irrelevance......Page 161
6 Symmetric reductions require Mix......Page 164
4 Proof Systems for π-Calculus Logics......Page 168
1 Introduction......Page 169
2 Preliminaries on the π-calculus......Page 171
3 A π-&#956-calculus......Page 176
4 Example specifications......Page 182
5 Proof system, modal fragment......Page 185
6 Soundness and completeness for the modal fragment......Page 202
7 Proof rules for recursive formulas......Page 203
8 Finite control completeness......Page 211
9 Natural numbers......Page 215
10 Buffers......Page 217
11 Conclusion......Page 219
Part II From a Descriptive Perspective......Page 236
1 Introduction......Page 238
2 Kripke structures......Page 239
3 Temporal logic model checking......Page 241
4 Symbolic model checking......Page 248
5 Conclusion......Page 256
1 Introduction......Page 262
2 Finite directed graphs......Page 264
3 Finite acyclic directed graphs......Page 267
5 Loopless undirected graphs......Page 280
6 Modal definability......Page 281
7 κ-Colourable graphs......Page 284
8 Conclusions......Page 289
1 Introduction......Page 292
2 Background......Page 293
3 Caucal’s hierarchy......Page 297
4 Richer logics......Page 299
5 Finite model theory......Page 301

电子书下载地址(Ebook download address)回复可见:
游客,如果您要查看本帖隐藏内容请回复

★★★学币不够看这里★★★1、每个同学都有一个独一无二的推广链接,请点击这里来获取
2、把你的推广链接告诉你的同学、同事、朋友,让他们注册,或者分享到你的微博,微信朋友圈、博客或者其他的论坛,让更多人的通过你的链接进来注册,那么你会获得非常可观的学币
3、每一个用户,通过你的链接来到论坛进行注册后,你都会获得10个学币!即便用户没有注册,他只要点击了你给的链接,浏览了科研迷论坛,你也能获得1个学币
4、通过分享资料,资料上传分享成功会获得5~10个学币!其他用户下载还会获得额外的学币哦!
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

关闭

站长推荐上一条 /1 下一条

Archiver|手机版|小黑屋|科研迷论坛 ( 闽ICP备17033831号-3 ) hello xym!!

GMT+8, 2020-2-18 12:53 , Processed in 0.023514 second(s), 8 queries , Redis On.

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表